Respuesta :
ANSWER
[tex](L \bullet \: W)(x)= 10 {x}^{3} - 20 {x}^{2} + 65x[/tex]
EXPLANATION
The length of a rectangle is represented by the function:
[tex]L(x) = 5x[/tex]
and the width is represented by
[tex]W(x)= 2 {x}^{2} - 4x + 13[/tex]
The area of a rectangle is calculated using the formula:
[tex]Area = LW[/tex]
In terms x, we have
[tex]Area = (L \bullet \: W)(x)= L(x) \times W(x)[/tex]
We plug in the functions representing the length and width to obtain;
[tex](L \bullet \: W)(x)= 5x(2 {x}^{2} - 4x + 13)[/tex]
We expand the parenthesis to obtain;
[tex](L \bullet \: W)(x)= 10 {x}^{3} - 20 {x}^{2} + 65x[/tex]