30 POINTS, Im pretty hopeless at this point and i know someone is just gonna rob the points thanks anyways


Given: △KMN, ABCD is a square
KN=a,
MP

KN
, MP=h
Find: AB

30 POINTS Im pretty hopeless at this point and i know someone is just gonna rob the points thanks anyways Given KMN ABCD is a square KNa MP KN MPh Find AB class=

Respuesta :

frika

Answer:

[tex]\dfrac{ah}{a+h}[/tex]

Step-by-step explanation:

Consider similar triangles BMC and KMN.

In these triangles,

[tex]\dfrac{BC}{KN}=\dfrac{MO}{MP},[/tex]

where O is the point of intersection of BC and MP.

Note that segment OP has the length the same as the side of the square ABCD. Hence,

[tex]\dfrac{BC}{a}=\dfrac{h-BC}{h},\\ \\BC\cdot h=a(h-BC),\\ \\BCh=ah-aBC,\\ \\BC(h+a)=ah,\\ \\BC=\dfrac{ah}{a+h}.[/tex]