Which point on the unit circle corresponds to −4π/3 ?

(1/2, −3√/2)
(-3√/2, 1/2)
(-1/2, 3√/2)
(3√/2, −1/2)

Respuesta :

Answer:

[tex]\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)[/tex]

Step-by-step explanation:

We know that coordinate of any point on unit circle is given by

[tex]\left(\cos\left(\theta\right),\sin\left(\theta\right)\right)[/tex]

Given that [tex]\theta=-\frac{4\pi}{3}[/tex]

So we just need to plug the value of given angle [tex]\theta=-\frac{4\pi}{3}[/tex] into above formula:

[tex]\left(\cos\left(\theta\right),\sin\left(\theta\right)\right)[/tex]

[tex]=\left(\cos\left(-\frac{4\pi}{3}\right),\sin\left(-\frac{4\pi}{3}\right)\right)[/tex]

[tex]=\left(\cos\left(2\pi-\frac{4\pi}{3}\right),\sin\left(2\pi-\frac{4\pi}{3}\right)\right)[/tex]

[tex]=\left(\cos\left(\frac{2\pi}{3}\right),\sin\left(\frac{2\pi}{3}\right)\right)[/tex]

[tex]=\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)[/tex]

Hence choice (3) is correct.

Answer:

-1/2, √3/2

Step-by-step explanation: