Respuesta :

Formula for the volume of cone is [tex] \frac{1}{3} \pi r^2h [/tex]

Where r= radius of the cone

h = height of the cone

The value of pi is 3.14

Given volume of larger cone is 131 cm^3

Volume of larger cone = [tex] \frac{1}{3} \pi r^2h [/tex]

131 = [tex] \frac{1}{3} \pi 5^2h [/tex]

Solve for h

131 = 26.1667 *h

So h= 5 cm

The height of bigger cone = 5cm

Now we find the volume of smaller cone

Two cones similar so the sides are in proportional

[tex] \frac{radius(small)}{radius(large)}= \frac{height(small)}{height(large)} [/tex]

[tex] \frac{2}{5} =\frac{ height of small}{5} [/tex]

Height of smaller cone = 2cm

volume of smaller cone = [tex] \frac{1}{3} \pi 2^2*2 [/tex]

= 8.38cm^3