Respuesta :

Dividend

Divisor

and

9x+6

Answer:

[tex]3(3x+2)=9x+6[/tex] units.

Step-by-step explanation:

We have been given that a rectangle has an area of [tex]45x^2-42x-48[/tex] and a width of [tex]5x-8[/tex]. We are asked to find the length of the rectangle.

Since we know that area of a rectangle equals to the product of its width and length, so to find the length of our given rectangle we will divide area of the rectangle by its width.

[tex]\text{Length of rectangle}=\frac{45x^2-42x-48}{5x-8}[/tex]

[tex]\text{Length of rectangle}=\frac{3(15x^2-14x-16)}{5x-8}[/tex]        

[tex]\text{Length of rectangle}=\frac{3(15x^2+10x-24x-16)}{5x-8}[/tex]

[tex]\text{Length of rectangle}=\frac{3(5x(3x+2)-8(3x+2))}{5x-8}[/tex]  

[tex]\text{Length of rectangle}=\frac{3((3x+2)(5x-8))}{5x-8}[/tex]  

Upon cancelling [tex]5x-8[/tex] from numerator and denominator we will get,

[tex]\text{Length of rectangle}=3(3x+2)[/tex]  

[tex]\text{Length of rectangle}=9x+6[/tex]  

Therefore, the length of the rectangle is [tex]3(3x+2)=9x+6[/tex] units.